Rhizobia modulate root-hair-specific expression of extensin genes.
نویسندگان
چکیده
Three cDNAs (ext3, ext127, and ext26), originally isolated by differential screening from a root-hair cDNA library of Vigna unguiculata, were found to encode extensin-like cell wall proteins. Transcripts homologous to these cDNAs were only detected in root hairs where mRNA levels decreased 1 day after inoculation with rhizobia. This coincided with the onset of root-hair deformation, the first morphological step in the Rhizobium-legume interaction. Decreases in transcript levels following inoculation with wild-type Rhizobium sp. NGR234 were more pronounced than with NGR delta nodABC, a mutant deficient in Nod-factor production. Inoculation with a rhizobial strain carrying a mutation in a gene encoding a transcriptional activator for nod genes (NGR delta nodD1) did not repress mRNA levels, indicating that a second nodulation signal may be present that is nodD dependent. Application of purified NodNGR factors only affected transcript levels of ext3. The genomic locus of the gene homologous to ext26 (Ext26G) was cloned. In the 5' flanking region, several potential TATA boxes and CAP signals were identified. Part of the promoter region shares homology with the Pisum sativum seed lectin promoter and the Nicotiana tabacum nitrate reductase promoter region. Nonetheless, the function of these homologous regions in gene regulation is unknown.
منابع مشابه
Regulation of root hair initiation and expansin gene expression in Arabidopsis.
The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of t...
متن کاملThe chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana.
In plants, the cell wall is a major determinant of cell morphogenesis. Cell enlargement depends on the tightly regulated expansion of the wall, which surrounds each cell. However, the qualitative and quantitative mechanisms controlling cell wall enlargement are still poorly understood. Here, we report the molecular and functional characterization of LRX1, a new Arabidopsis gene that encodes a c...
متن کاملDistinct Hormone Regulation of Determinate and Indeterminate Nodule Development in Legumes
Symbiotic root nodules arise from a well-coordinated interaction between leguminous plants and diazotropic soil bacterial collectively termed rhizobia. Legume roots release specific flavonoid compounds that are recognized by compatible rhizobia species. The rhizobia respond by producing lipochitooligosaccharide “nod factors” that are in turn recognized by LysM domain receptor-like kinases of co...
متن کاملThe Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234
Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacter...
متن کاملAnalysis of SFL1 and SFL2 Promoter Region in Arabidipsis thaliana using Gateway Cloning System
SFL1 and SFl2 (SETH Four Like) genes are two members of SETH4 gene family in Arabidopsis thaliana expressed in saprophytic tissues. In this study, expression of SFL1 and SFL2 genes were studied using Gateway Cloning Technology. Primers were designed for PCR amplification of promoter region of SFL1 (900 bp) and SFL2 (930 bp) genes having attB1 recombination sites using Kod Hi Fi DNA polymerase e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant-microbe interactions : MPMI
دوره 10 1 شماره
صفحات -
تاریخ انتشار 1997